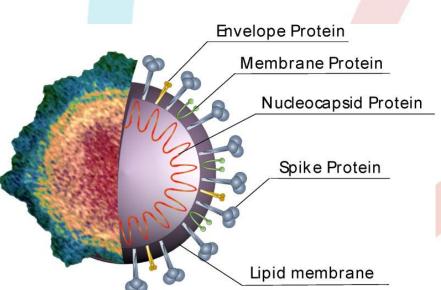


Universidade do Minho Escola de Engenharia

Essential oils-loaded nanofibrous mats inhibitory effect against the *Escherichia* virus MS2, mimic of SARS-CoV-2


Helena P. Felgueiras

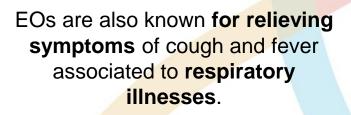
Centre for Textile Science and Technology University of Minho, Guimarães, PORTUGAL helena.felgueiras@2c2t.uminho.pt

COVID-19

In December 2019, a novel strain of coronavirus, SARS-CoV-2, was identified. Infected patients revealed symptoms of fever, cough (dry), sore throat, and fatigue, which began manifesting after 5 days of incubation.

Hoping to prevent transmission, many countries adopted a mandatory mask use. However, most mask options display a passive action against COVID-19.

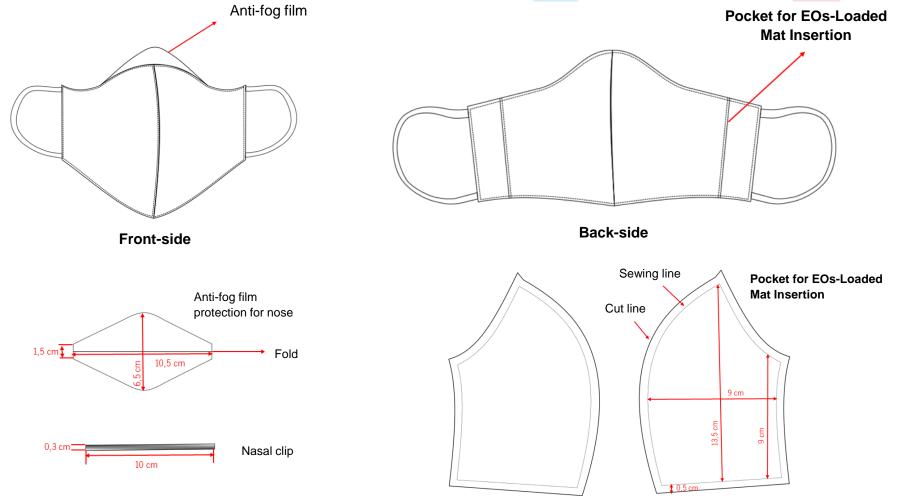
Essential Oils (EOs)


EOs are produced by more than **17,500 species** of plants

仑

Biomolecules endowed with antimicrobial and regenerative potential

Example: **garlic oil** is capable of inhibiting the angiotensinconverting enzyme 2 protein, leading **SARS-CoV-2** to lose its host receptor and attack the PDB6LU7 protein (its main protease), thus preventing virus maturation and spreading.



This work proposes the incorporation of anti-viral EOs on a nanofibrous mats that can be adapted to both hand-made and commercial masks.

Mask Schematics

Modeling of the Pocket for EOs-Loaded Mat Insertion

EOs Selection

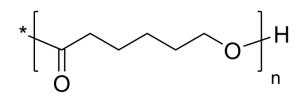
20 EOs with antimicrobial potential were examined for their minimum inhibitory concentrations (MICs) against the MS2 *Escherichia* host and for their virucidal concentration (VC) against the MS2 virus, mimic of SARS-CoV-2, at initial concentration of 1x10⁷ CFUs or PFUs/mL, respetivelly.

List of tested EOs:

Amyris; Cajeput; Cinnamon leaf; Citronella; Clove; **Eucalyptus**; Frankincense; Geranium; Himalayan cedar; Lavandin; **Lemongrass**; **Niaouli**; **Orchid**; Palmarosa; Patchouli; Rosemary; **Sage**; Star anise; **Tea tree oil**; Wintergreen.

EOs	MICs against MS2 host (mg/mL)*	VC against <mark>MS2 virus (mg/mL)</mark> *
Lemongrass (LGO)	178.0	356.0
Niaouli (NO)	45.7	365.2
Eucalyptus (ELO)**	>	586.0
Orchid	85.6	428.0
Tea Tree Oil	22.4	447.5
Clove	105.6	528.0

* Standard deviation was < ± 5.0 mg/mL.


**Even though the VC is superior to the last three-placed EOs, the amount of oil required for loading is inferior due to its increased density.

Electrospun Nanofibers

CENTRO DE CIÊNCIA E TECNOLOGIA TEXTIL

Selected polymer

Why PCL?

- Food and Drug Administration (FDA)-approved;
- Drug loading efficiency (i.e., EOs biomolecules);
- Excellent mechanical strength, non-toxic, hydrophobic, biodegradable, etc.

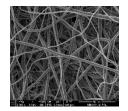
Polymeric solution preparation

Concentration: 14 wt.% Solvents: chloroform/dimethyl formamide (CHF/DMF at 9/1 v/v)

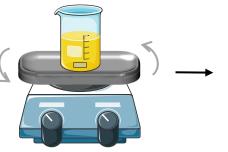
Electrospinning processing conditions

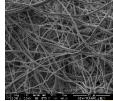
Potential: 23 kV Extruding Speed: 0.7 mL/h Distance to Collector: 26 cm Needle (inner diameter): 18 gauge

Nanofibers Loading

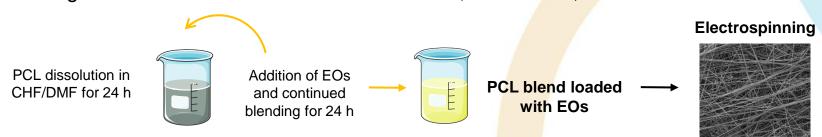


Loading Amount: 10% of VC

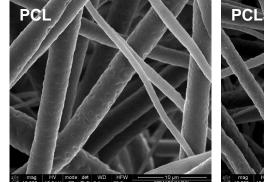

(> 10% VC turned the mats sticky and the fragrance too intense)

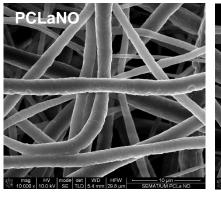

Strategy 1

Physical adsorption of the EOs at the surface of the electrospun PCL mats (label PCLa EOs)

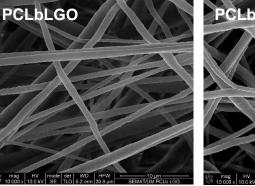

24 h immersion of PCL electrospun mats within EOs solutions, at 150 rpm (orbital shaking)

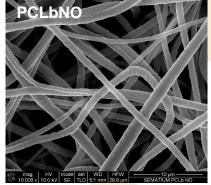
Mats' ethanol washing and subsequent drying

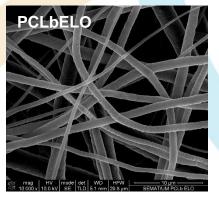

Strategy 2 Blending the PCL solution with the selected EOs (label PCLbEOs)


Nanofiber Morphology

Scanning electron microscopy (SEM) observations **10 000x** magnification







Nanofibers are **uniform** and continuous (defect free).

EO adsorption does not alter the fibers diameters. Blending PCL with EOs before electrospinning reduces the average diameter of the fibers and increases porosity.

Loading and Release

EOs Loading: UV-visible spectroscopy

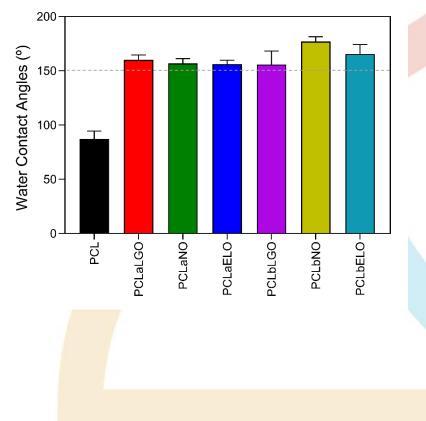
- PCLaEOs mass determinations made indirectly, via EOs immersion solutions (10% VC) and ethanol washing bath
- PCLbEOs mass determinations made directly on the modified mats

EOs release: solid phase micro-extraction followed by gas chromatography-mass spectrometry (SPME-GC-MS)

- Normalized to the most important compound within the EOs, namely citral (LGO) and 1,8-cineole (NO and ELO).
- 4 h testing at 35°C (skin temperature)

	Mats	Loaded Mass (µg)	EOs Release (%)
Strategy 1: Physical → Adsorption	PCLaLGO	5257 ± 2510	50.3 ± 0.1
	PCLaNO	800 ± 184	0.3 ± 0.1
	PCLaELO	5079 ± 4122	0.1 ± 0.0
Strategy 2: _ Blending	PCLbLGO	1673 ± 641	13.3 ± 3.5
	PCLbNO	1128 ± 98	11.3 ± 8.4
	PCLbELO	631 ± 173	10.7 ± 6.3

Wettability

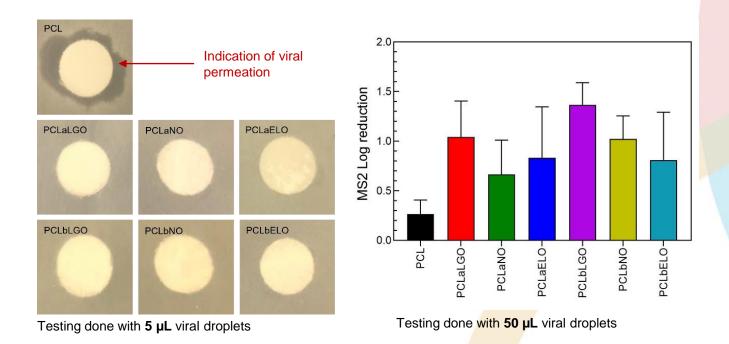

Contact Angle OCA 15, Data Physics (Filderstadt, Germany)

Standard Followed: ASTM-D7334-08, sessile drop method Drop Size: 10 µL water drops (video-based drop shape analyzer, OCA15 plus software)

Without Oil With Oil

Addition of EOs increased the hydrophobicity of the mats from hydrophobic to superhydrophobic (> 150°).

This **water-repellency** feature will prevent the virus from penetrating the mask.



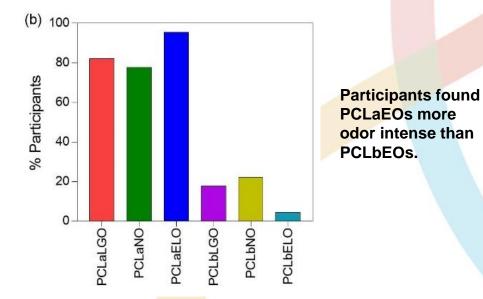
Antiviral Performance

Contact Killing Examinations

Microorganism: Bacteriophage MS2 (*Escherichia coli* virus, mimic of SARS-CoV-2) Initial Concentration (t = 0 h): 1.0×10^7 PFUs/mL Culture Media: ATCC medium 271

MS2 reduction was observed after 4 h of interaction on all EO-loaded mats. PCL blended with LGO was the most effective from the group in fighting the virus. EOs-loaded mats were also seen to retain virus and prevent penetration through mask.

Sensory Testing



Descriptive, discriminatory and affective analyses were conducted

Number of participants: 45, aged between 18 and 59 years (average of 30 years) and made of 60% females and 40% males

Smelling was conducted at 1 to 2 cm distance from the face, for at least 30 seconds

PCLbLGO was deemed the most pleasant from the group, while PCLaELO was considered the least.

Conclusions

Data demonstrated the potential of PCL electrospun fibers loaded with EOs to be used for prospective protection mask uses (i.e., as intermediate layers).

The most antiviral effective combination was the PCL blended with LGO, which was also deemed the most pleasant by the sensory testing participants.

Production Cost/EOs-Loaded Mat:

- LGO (100 mL) = 17.66 €
- PCL (500 g) = 304.00 €
- CHF (2.5 L) = 108.00 €
- DMF (5 L) = 204.10 €
- Energy costs = 0.04 €/h

5 mL of PCLbLGO and 2 h production = 0.71 € per Mat

Lab-Scale Production

Large-Scale Production Cost Projections = 0.23 € per Mat

Acknowledgements

JM Domingues

MO Teixeira

MA Teixeira

RDV Fernandes

J Padrão

A Zille

JC Antunes

D Freitas

C Silva

Digital Transformation

CoLab

S Tohidi

Thank you for your

attention.

This work is financed by FEDER funds through COMPETE and by national funds through FCT via the projects POCI-01-0145-FEDER-028074 (PEPTEX) and UID/CTM/00264/2020.